https://doi.org/10.18654/1000-0569/2022.02.13
Видання: Acta Petrologica Sinica, 2022, №2, с.495-512
Видавець: Chinese Society for Mineralogy, Petrology, and Geochemistry
Автори:
- ZHENG YuLin
- 自然资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037,MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
- ZHAO Zheng
- ZHANG ChangQing
- LI HongWei
- LI Biao
- 合肥工业大学资源与环境工程学院, 合肥 230009,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- 中国地质大学(北京)地球科学与资源学院, 北京 100083,School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
- 河北省地矿局第五地质大队, 唐山 063000,The Fifth Geological Brigade of Hebei Bureau of Geology and Mineral Resources, Tangshan 063000, China
Список літератури
- Abdel-Rahman AFM. 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35(2):525-541
https://doi.org/10.1093/petrology/35.2.525 - Audt'at A, Gnther D and Heinrich CA. 2000. Magmatic-hydrothermal evolution in a fractionating granite:A microchemical study of the Sn-W-F-mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta, 64(19):3373-3393
https://doi.org/10.1016/S0016-7037(00)00428-2 - Azadbakht Z, Lentz DR, McFarlane CRM and Whalen JB. 2020. Using magmatic biotite chemistry to differentiate barren and mineralized Silurian-Devonian granitoids of New Brunswick, Canada. Contributions to Mineralogy and Petrology, 175(7):69
https://doi.org/10.1007/s00410-020-01703-2 - Barrière M and Cotton J. 1979. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contributions to Mineralogy and Petrology, 70(2):183-192
https://doi.org/10.1007/BF00374447 - Blevin PL and Chappell BW. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):305-316
https://doi.org/10.1017/S0263593300007987 - Breiter K, Vaňková M, Galiová MV, Korbelová Z and Kanicky V. 2017. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS. Mineralogical Magazine, 81(1):15-33
https://doi.org/10.1180/minmag.2016.080.137 - Burnham CW and Ohmoto H. 1980. Late-stage processes of felsic magmatism. Mining Geology, 8:1-11
- Candela PA. 1992. Controls on ore metal ratios in granite-related ore systems:An experimental and computational approach. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):317-326
https://doi.org/10.1017/S0263593300007999 - Cao JY, Yang XY, Zhang DX and Yan FB. 2020. In situ trace elements and Sr isotopes in scheelite and S-Pb isotopes in sulfides from the Shiweidong W-Cu deposit, giant Dahutang ore field:Implications to the fluid evolution and ore genesis. Ore Geology Reviews, 125:103696
https://doi.org/10.1016/j.oregeorev.2020.103696 - Chang YF, Li JH and Song CZ. 2019. The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 35(12):3579-3591 (in Chinese with English abstract)
https://doi.org/10.18654/1000-0569/2019.12.01 - Chen JF, Sheng D, Shao YJ, Zhang JX, Liu ZF, Wei HT, Yang QD, Luo XY and Du Y. 2019. Silurian S-type granite-related W-(Mo) mineralization in the Nanling Range, South China:A case study of the Pingtan W-(Mo) deposit. Ore Geology Reviews, 107:186-200
https://doi.org/10.1016/j.oregeorev.2019.02.020 - David RW and Hans PE. 1965. Stability of biotite:Experiment, theory, and application. American Mineralogist, 50(9):1228-1272
- De Albuquerque CAR. 1973. Geochemistry of biotites from granitic rocks, Northern Portugal. Geochimica et Cosmochimica Acta, 37(7):1779-1802
https://doi.org/10.1016/0016-7037(73)90163-4 - Fan XK, Mavrogenes J, Hou ZQ, Zhang ZY, Wu XY and Dai JL. 2019. Petrogenesis and metallogenic significance of multistage granites in Shimensi tungsten polymetallic deposit, Dahutang giant ore field, South China. Lithos, 336-337:326-344
https://doi.org/10.1016/j.lithos.2019.04.001 - Förster HJ, Tischendorf G, Trumbull RB and Gottesmann B. 1999. Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11):1613-1645
https://doi.org/10.1093/petroj/40.11.1613 - Foster MD. 1960. Interpretation of the composition of trioctahedral micas. Washington:US Government Printing Office, 1-49
https://doi.org/10.3133/pp354B - Guo NX, Zhao Z, Gao JF, Chen W, Wang DH and Chen YC. 2018. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China. Ore Geology Reviews, 94:414-434
https://doi.org/10.1016/j.oregeorev.2018.02.015 - Guo YY, He WY, Li ZC, Ji X Z, Han Y, Fang WK and Yin C. 2015. Petrogenesis of Geerkuohe porphyry granitoid, western Qinling:Constraints from mineral chemical characteristics of biotites. Acta Petrologica Sinica, 31(11):3380-3390 (in Chinese with English abstract)
- Henry DJ, Guidotti CV and Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3):316-328
https://doi.org/10.2138/am.2005.1498 - Huang LC and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China:Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203:207-226
https://doi.org/10.1016/j.lithos.2014.05.030 - Huang XL, Wang RC, Chen XM, Hu H and Liu CS. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4):1047-1068
https://doi.org/10.2113/gscanmin.40.4.1047 - Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27(145):293-305
- Jia DL, Zhang WY, Li L and Yu XF. 2018. Mineral resource potential and key exploration areas of Jiangnan metallogenic belt. IOP Conference Series:Earth and Environmental Science, 199(4):042012
https://doi.org/10.1088/1755-1315/199/4/042012 - Jiang H, Zhang DY, Zhou TF, Chen XF, Ye LX, Yu ZD and Xing XK. 2018. Geochemical characteristics of biotite from igneous rocks in Dahutang tungsten ore district and its implications. Mineral Deposits, 37(6):1147-1167 (in Chinese with English abstract)
- Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL and Dan XH. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3):639-655 (in Chinese with English abstract)
- Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ and Yang WZ. 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China:Implications for granitoid geneses. Lithos, 63(3-4):165-187
https://doi.org/10.1016/S0024-4937(02)00140-8 - Keppler H and Wyllie PJ. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H<sub>2</sub>O-HCl and haplogranite-H<sub>2</sub>O-HF. Contributions to Mineralogy and Petrology, 109(2):139-150
https://doi.org/10.1007/BF00306474 - Keppler H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114(4):479-488
https://doi.org/10.1007/BF00321752 - Li BL, Xie YH, Zhao R and Li RM. 1985. Magmatic process and geochemistry of calc-alkaline complex from Yangchuling, Jiangxi Province. Acta Petrologica Sinica, 1(2):1-16 (in Chinese with English abstract)
https://doi.org/10.1007/BF02872060 - Li HW, Zhao Z, Chen ZY, Guo NX, Gan JW, Li XW and Yin Z. 2021. Genetic relationship between the two-period magmatism and W mineralization in the Dahutang ore-field, Jiangxi Province:Evidence from zircon geochemistry. Acta Petrologica Sinica, 37(5):1508-1530 (in Chinese with English abstract)
https://doi.org/10.18654/1000-0569/2021.05.11 - Li J, Huang XL, He PL, Li WX, Yu Y and Chen LL. 2015. In situ analyses of micas in the Yashan granite, South China:Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65:793-810
https://doi.org/10.1016/j.oregeorev.2014.09.028 - Li WX, Li XH, Li ZX and Lou FS. 2008. Obduction-type granites within the NE Jiangxi ophiolite:Implications for the final amalgamation between the Yangtze and Cathaysia blocks. Gondwana Research, 13(3):288-301
https://doi.org/10.1016/j.gr.2007.12.010 - Li XY, Chi GX, Zhou YZ, Deng T and Zhang JR. 2017. Oxygen fugacity of Yanshanian granites in South China and implications for metallogeny. Ore Geology Reviews, 88:690-701
https://doi.org/10.1016/j.oregeorev.2017.02.002 - Lin WW and Peng LJ. 1994. The estimation of Fe<sup>3+</sup> and Fe<sup>2+</sup> contents in amphibole and biotite from EMPA data. Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract)
- Man FS and Wang XS. 1988. Study on the isotopic geochronology of Yangchuling porphyry type of tungsten and molybdenum deposit. Mineral Resources and Geology, 2(4):61-67 (in Chinese with English abstract)
- Manning DAC and Henderson P. 1984. The behaviour of tungsten in granitic melt-vapour systems. Contributions to Mineralogy and Petrology, 86(3):286-293
https://doi.org/10.1007/BF00373674 - Mao JW, Hua RM and Li XB. 1999. A preliminary study of large-scale metallogenesis and large clusters of mineral deposits. Mineral Deposits, 18(4):291-299 (in Chinese with English abstract)
- Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China:Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10):2329-2338 (in Chinese with English abstract)
- Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4):510-526 (in Chinese with English abstract)
- Mao JW, Pirajno F and Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings:An introduction to the special issue. Ore Geology Reviews, 43(1):1-7
https://doi.org/10.1016/j.oregeorev.2011.09.003 - Mao JW, Xiong BK, Liu J, Pirajno F, Cheng YB, Ye HS, Song SW and Dai P. 2017. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China:Implications for petrogenesis, mineralization and geodynamic setting. Lithos, 286-287:35-52
https://doi.org/10.1016/j.lithos.2017.05.023 - Mao JW, Wu SH, Song SW, Dai P, Xie GQ, Su QW, Liu P, Wang XG, Yu ZZ, Chen XY and Tang WX. 2020. The world-class Jiangnan tungsten belt:Geological characteristics, metallogeny, and ore deposit model. Chinese Science Bulletin, 65(33):3746-3762 (in Chinese)
https://doi.org/10.1360/TB-2020-0370 - Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK and Luo XH. 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, Middle Yangtze River region, China:Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research, 28(2):816-836
https://doi.org/10.1016/j.gr.2014.07.005 - Mo MZ. 1988. A preliminary study on alteration zoning of the Yangchuling porphyry W-Mo deposit and its relationship to mineralization. Mineral Deposits, 7(3):50-59 (in Chinese with English abstract)
- Munoz JL and Swenson A. 1981. Chloride-hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Economic Geology, 76(8):2212-2221
https://doi.org/10.2113/gsecongeo.76.8.2212 - Munoz JL. 1984. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 13(1):469-493
https://doi.org/10.1515/9781501508820-015 - Munoz JL. 1992. Calculation of HF and HCl fugacities from biotite compositions:Revised equations. Geological Society of American Abstracts with Programs, 24:221
- Mysen BO. 1990. Relationships between silicate melt structure and petrologic processes. Earth-Science Reviews, 27(4):281-365
https://doi.org/10.1016/0012-8252(90)90055-Z - Nachit H, Ibhi A, Abia EH and Ohoud MB. 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16):1415-1420
https://doi.org/10.1016/j.crte.2005.09.002 - Qiu KF and Deng J. 2017. Petrogenesis of granitoids in the Dewulu skarn copper deposit:Implications for the evolution of the Paleotethys ocean and mineralization in western Qinling, China. Ore Geology Reviews, 90:1078-1098
https://doi.org/10.1016/j.oregeorev.2016.09.027 - René M, Holtz F, Luo C, Beermann O and Stelling J. 2008. Biotite stability in peraluminous granitic melts:Compositional dependence and application to the generation of two-mica granites in the South Bohemian Batholith (Bohemian Massif, Czech Republic). Lithos, 102(3-4):538-553
https://doi.org/10.1016/j.lithos.2007.07.022 - Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8):1515-1533
https://doi.org/10.2113/gsecongeo.98.8.1515 - Ridolfi F, Puerini M, Renzulli A, Menna M and Toulkeridis T. 2008. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176(1):94-106
https://doi.org/10.1016/j.jvolgeores.2008.03.003 - Rieder M, Cavazzini G, D'Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Mueller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z and Wones DR. 1998. Nomenclature of the micas. The Canadian Mineralogist, 36(3):905-912
- Shu LS. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract)
- Song SW, Mao JW, Zhu YF, Yao ZY, Chen GH, Rao JF and Ouyang YP. 2018a. Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, South China:A case study at the giant Zhuxi W-Cu skarn deposit. Lithos, 304-307:180-199
https://doi.org/10.1016/j.lithos.2018.02.002 - Song SW, Mao JW, Xie GQ, Yao ZY, Chen GH, Rao JF and Ouyang YP. 2018b. The formation of the world-class Zhuxi scheelite skarn deposit:Implications from the petrogenesis of scheelite-bearing anorthosite. Lithos, 312-313:153-170
https://doi.org/10.1016/j.lithos.2018.05.002 - Speer JA. 1984. Micas in igneous rocks. Reviews in Mineralogy and Geochemistry, 13(1):299-356
https://doi.org/10.1515/9781501508820-013 - Stepanov A, Mavrogenes JA, Meffre S and Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167(6):1009
https://doi.org/10.1007/s00410-014-1009-3 - Stone D. 2000. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, Northwest Superior Province, Ontario, Canada. The Canadian Mineralogist, 38(2):455-470
https://doi.org/10.2113/gscanmin.38.2.455 - Su HM and Jiang SY. 2017. A comparison study of tungsten-bearing granite and related mineralization in the northern Jiangxi-southern Anhui provinces and southern Jiangxi Province in South China. Science China (Earth Sciences), 60(11):1942-1958
https://doi.org/10.1007/s11430-016-9071-6 - Sun WD, Huang RF, Li H, Hua YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE and Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65:97-131
https://doi.org/10.1016/j.oregeorev.2014.09.004 - Van Lichtervelde M, Grégoire M, Linnen RL, Béziat D and Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6):791-806
https://doi.org/10.1007/s00410-007-0271-z - Van Middelaar WT and Keith JD. 1990. Mica chemistry as an indicator of oxygen and halogen fugacities in the Can Tung and other W-related granitoids in the North American Cordillera. In:Stein HJ and Hannah JL (eds.). Ore-bearing Granite Systems; Petrogenesis and Mineralizing Processes. Geological Society of America, 246:205-220
https://doi.org/10.1130/SPE246-p205 - Wang XL, Zhao GC, Zhou JC, Liu YS and Hu J. 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research, 14(3):355-367
https://doi.org/10.1016/j.gr.2008.03.001 - Wang XL, Zhou JC, Griffin WL, Zhao GC, Yu JH, Qiu JS, Zhang YJ and Xing GF. 2014. Geochemical zonation across a Neoproterozoic orogenic belt:Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242:154-171
https://doi.org/10.1016/j.precamres.2013.12.023 - Wang XL, Zhou JC, Chen X, Zhang FF and Sun ZM. 2017. Formation and evolution of the Jiangnan orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5):714-735 (in Chinese with English abstract)
- Wang YJ, Fan WM, Zhang GW and Zhang YH. 2013. Phanerozoic tectonics of the South China Block:Key observations and controversies. Gondwana Research, 23(4):1273-1305
https://doi.org/10.1016/j.gr.2012.02.019 - Webster J, Thomas R, Förster HJ, Seltmann R and Tappen C. 2004. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39(4):452-472
https://doi.org/10.1007/s00126-004-0423-2 - Whalen JB and Chappell BW. 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, Southeast Australia. American Mineralogist, 73(3-4):281-296
- Wood SA and Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments:Ⅰ. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95(1):143-182
https://doi.org/10.2113/gsecongeo.95.1.143 - Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites:Recognition and research. Science China (Earth Sciences), 60(7):1201-1219
https://doi.org/10.1007/s11430-016-5139-1 - Xiang XK, Chen MS, Zhan GN, Qian ZY, Li H and Xu JH. 2012. Metallogenic geological conditions of Shimensi tungsten-polymetallic deposit in North Jiangxi Province. Contributions to Geology and Mineral Resources Research, 27(2):143-155 (in Chinese with English abstract)
- Yin R, Han L, Huang XL, Li J, Li WX and Chen LL. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization:Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104(7):949-965
https://doi.org/10.2138/am-2019-6796 - Yin Z, Zhao Z, Tao JL, Wu SH, Li HW, Gan JW, Chen W and Li XW. 2021. Deposit geology, geochronology and metallogenic model of Helong W deposit in southern Jiangxi Province. Acta Petrologica Sinica, 37(5):1531-1552 (in Chinese with English abstract)
https://doi.org/10.18654/1000-0569/2021.05.12 - Zhao JH, Zhou MF, Yan DP, Zheng JP and Li JW. 2011. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny. Geology, 39(4):299-302
https://doi.org/10.1130/G31701.1 - Zhao Z, Chen YC, Zeng ZL, Guo NX, Chen ZH, Wang DH, Liu CH, Liu ZY, Wang PA and Li JD. 2017. Jiangxi Yinkeng W-Ag-Au ore field's metallogenic regularity and prospecting direction:As well as the superposition of two metallogenic series in southern China. Earth Science Frontiers, 24(5):54-61 (in Chinese with English abstract)
- Zhao Z, Liu C, Guo NX, Zhao WW, Wang PA and Chen ZH. 2018a. Temporal and spatial relationships of granitic magmatism and W mineralization:Insights from the Xingguo orefield, South China. Ore Geology Reviews, 95:945-973
https://doi.org/10.1016/j.oregeorev.2018.03.022 - Zhao Z, Zhao WW, Lu L and Wang HY. 2018b. Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region, South China. Ore Geology Reviews, 94:46-57
https://doi.org/10.1016/j.oregeorev.2018.01.009 - Zhao Z, Zhou XP, Guo NX, Zhang HY, Liu ZY, Zheng YL, Zeng ZL and Chen YC. 2018c. Superimposed W and Ag-Pb-Zn(-Cu-Au) mineralization and deep prospecting:Insight from a geophysical investigation of the Yinkeng orefield, South China. Ore Geology Reviews, 93:404-412
https://doi.org/10.1016/j.oregeorev.2018.01.017 - Zhao Z, Fu TY, Gan JW, Liu C, Wang DH, Sheng JF, Li WB, Wang PA, Yu ZF and Chen YC. 2021. A synthesis of mineralization style and regional distribution and a proposed new metallogenic model of Mesozoic W-dominated polymentallic deposits in South China. Ore Geology Reviews, 133:104008
https://doi.org/10.1016/j.oregeorev.2021.104008 - Zheng YL, Zhang CQ, Jia FD, Liu H and Yan QG. 2021. Apatite and zircon geochemistry in Yao'an alkali-rich porphyry gold deposit, Southwest China:Implications for petrogenesis and mineralization. Minerals, 11(11):1293
https://doi.org/10.3390/min11111293 - Zheng YL, Zhou GW, Zhang CQ, Hu JM and Zhang PP. 2021. Chemical characteristics of hornblende and biotite in barren syenite porphyry from Yaoan gold deposit in western Yunnan and geological significance. Mineral Deposits, 40(5):963-976 (in Chinese with English abstract)
- Zhong YF, Ma CQ, She ZB, Lin GC, Xu HJ, Wang RJ, Yang KG and Liu Q. 2005. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi Province. Earth Science (Journal of China University of Geosciences), 30(6):685-691 (in Chinese with English abstract)
- Zhou JC, Wang XL and Qiu JS. 2009. Some Neoproterozoic Geological events involved in the development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4):453-459 (in Chinese with English abstract)
- Zhu C and Sverjensky DA. 1992. F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56(9):3435-3467
https://doi.org/10.1016/0016-7037(92)90390-5
Публікації, які цитують цю публікацію
Geochronology, geochemistry, and mineral chemistry of the Lingshan-Huangshan complex, South China: Insights into Nb and Ta enrichment
Xuena Wang, Xilian Chen, Shaohao Zou, Zhiwen Jia, Bo Li, Hua Wang, Deru Xu
https://doi.org/10.1016/j.oregeorev.2023.105433 ·
2023, Ore Geology Reviews, с.105433
Scopus
WoS
Цитувань Crossref:1
Transformation of Mesozoic dynamic systems and superposition of metallogenic series of W-Sn-Li-Be-Nb-Ta-REE mineral deposits in South China
ZHAO Zheng, 自然资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037,MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China, CHEN YuChuan, WANG DengHong, LI JianKang, LIU ShanBao, CHEN ZhenYu, GUO ChunLi, WANG PingAn, 中国地质科学院, 北京 100037,Chinese Academy of Geological Sciences, Beijing 100037, China
https://doi.org/10.18654/1000-0569/2022.02.01
2022, Acta Petrologica Sinica, №2, с.301-322
Scopus
WoS
Цитувань Crossref:5
Знайти всі цитування публікації
Дані публікації
Кількість цитувань | 2 |
Кількість джерел у списку літератури: | 86 |
Видання індексується в Scopus | Так |
Видання індексується в Web of Science | Так |